Espectroscopía ATR-FTIR y de correlación bidimensional (2dcos) aplicada a la caracterización de materiales lignocelulósicos

Authors

Keywords:

ATR-FTIR Spectroscopy, Cellulose, Wood

Abstract

Cotton samples with different degrees of moisture content and 27 samples of pine wood of various species were analyzed using Attenuated Total Reflectance FTIR spectroscopy (ATR-FTIR). A Two Dimensional Correlation Analysis (2DCOS) was performed with the spectra to stablish interactions between the functional groups of materials. Synchronous and asynchronous spectra of cellulose and wood allowed the establishment of molecular dynamics that occur when lignocellulosic compounds are subjected to a changue, and even to stablish the differences between them. In the case of wood, there was a notable improvement in the resolution of the bands, which facitates characterization. With 2DCOS spectra it was even posible to differentiate the behavioir of phenolic hydroxyls, which cannot be visualized with conventional ATR-FTIR spectra. In this way, 2DCOS analysis is a tool that significantrly complements FTIR spectroscopy.

References

S. Imlimthan, P. Figueiredo, H. A. Santos, y M. Sarparanta, "Chapter 1- Introduction to lignocellulosic materials", en Lignin-Based Materials for Biomedical Applications, H. Santos y P. Figueiredo, Eds., Elsevier, pp.1- 34, 2021, doi: https://doi.org/10.1016/B978-0-12-820303-3.00010-2.

S. He, X. Zhao, E. Q. Wang, G. S. Chen, P.-Y. Chen, y L. Hu, "Engineered Wood: Sustainable Technologies and Applications", Annu. Rev. Mater. Res., vol. 53, num. 1, pp. 195-223, 2023, doi: https://doi:10.1146/a nnurev-matsci-010622.

A. Etale, A. J. Onyianta, S. R. Turner, y S. J. Eichhorn, "Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment", Chem. Rev., vol. 123, num. 5, pp. 2016-2048, 2023, doi: https://10.1021/acs.chemrev.2c00477.

J. A. Okolie, S. Nanda, A. K. Dalai, y J. A. Kozinski, "Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass", Waste Biomass Valorization, vol.12, num. 5, pp. 2145-2169, 2021, doi: https://doi.org/10.1007/s12649-020-01123-0.

S. Jing, L Wu, A. P. Siciliano, C. Chen, T. Li, y L. Hu, "The Critical Roles of Water in the Processing, Structure, and Properties of Nanocellulose", ACS Nano, vol.17, num. 22, pp. 22196-22226, 2023, doi: https://doi.org/10.1021/acsnano.3c06773.

J. Li, C. Chen, J. Y. Zhu, A. J. Ragauskas, y L. Hu, "In Situ Wood Delignification toward Sustainable Applications", Acc. Mater. Res., vol. 2, num. 8, pp. 606-620, 2021, doi: https://doi.org/10.1021/accountsmr.1c00075.

Y. Park, S. Jin, I. Noda, y Y. M. Jung, "Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS), part I. Yesterday and today", Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 281, num. 121573, 2022, doi: https://doi.org/10.1016/j.saa.2022.121573.

P. Lasch y I. Noda, "Two-Dimensional Correlation Spectroscopy (2D-COS) for Analysis of Spatially Resolved Vibrational Spectra", Appl. Spectrosc., vol. 73, num. 4, pp. 359-379, 2019, doi: https://doi.org/10.1177/0003702818819880.

I. Noda, "Chapter 2 - Advances in Two-Dimensional Correlation Spectroscopy (2DCOS)", en Frontiers and Advances in Molecular Spectroscopy, J. B. T.-F. and A. in M. S. Laane, Eds., Elsevier, pp. 47-75, 2018, doi: https://doi.org/10.1016/B978-0-12-811220-5.00002-2.

Y. Park, S. Jin, I. Noda, y Y. M. Jung, "Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS), part II. Recent noteworthy developments", Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 284, n 0 rn. 121750, 2023, doi: https://doi.org/10.1016/j.saa.2022.121750.

Y. Park, S. Jin, I. Noda, y Y. M. Jung, "Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications", Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 284, nurn.121636, 2023, doi: https://doi.org/10.1016/j.saa.2022.121636.

Perkin-Elmer Inc., Software "Spectrum" version 10.4, 2013.

S. Morita, "2DPy, Generalized 2D Correlation Spectroscopy by Python", 2022, GitHub. Consultado: el 2 de junio de 2024. [En linea]. Disponible en: https://github.com/shigemorita/2Dpy

M. Li, B. He, Y. Chen, y L. Zhao, "Physicochemical Properties of Nanocellu lose Isolated from Cotton Stalk Waste", ACS Omega, vol. 6, num.

A. Turki, A. El Oudiani, S. Msahli, y F. Sakli, "Infrared Spectra for Alfa Fibers Treated with Thymol", J. Glycobiol., vol. 07, num. 01, pp.1-8, 2018, doi: https://doi.org/10.4172/2168-958x.1000130.

C. M. Lee, J. D. Kubicki, B. Fan, L. Zhong, M. C. Jarvis, y S. H. Kim, "Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra", J. Phys. Chem. B, vol.119, num. 49, pp.15138-15149, 2015, doi: https://doi.org/10.1021/acs.jpcb.5b08015.

J. Reyes-Rivera y T. Terrazas, "Lignin Analysis by HPLC and FTIR: Spectra Deconvolution and S/G Ratio Determination", en Methods in Molecular Biology, vol. 2722, Humana Press Inc., pp.149-169, 2024, doi: https://doi.org/10.1007/978-1-0716-3477-6_12.

V. Sharma, J. Yadav, R. Kumar, D. Tesarova, A. Ekielski, y P. K. Mishra, "On the rapid and non-destructive approach for wood identification using ATR-FTIR spectroscopy and chemometric methods", Vib. Spectrosc., vol.110, p.103097, 2020, doi: https://doi.org/10.1016/j.vibspec.2020.103097.

S. G. Kostryukov, H.B. Matyakubov, Y.Y. Masterova, A.S. Kozlov, M.K. Pryanichnikova, A.A. Pynenkov y N.A. Khluchina, "Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy", J. Analyt. Chem., vol. 78, num. 6, pp. 718-727, 2023, doi: https://doi.org/10.1134/S1061934823040093.

Published

2024-12-31