Biorremediación de aguas con hidrocarburo y producción de voltaje en dispositivo bioelectroquímico

Authors

Keywords:

: Electrogen, Electrochemical device, B. altitudinis

Abstract

The microbial fuel cell (MFC) is an electrochemical device where the chemical energy of organic matter can be converted into electricity. In the anode chamber the removal of hydrocarbon and the simultaneous generation of voltage depend on the inoculum concentration. With an initial inoculum of 34 x 104 ±3 colony forming units per milliliter (CFU/mL), a voltage of  ~  400 mV was achieved after 100 days with a population of 50 x 105 ±3 UFC/mL. The electrogenic microorganism B. altitudinis used in the anode chamber tolerated up to 20,000 ppm of hydrocarbons and in the MFC it was able to degrade up to 70 % of the initial oil. Cyclic voltammetry showed the existence of redox compounds generated by B. altitudinis during the consumption of oil as the only carbon source. The use of B. altitudinis for the removal of hydrocarbons in water and the simultaneous production of energy by means of MFCs can be an alternative to conventional technologies.

Author Biographies

Andy Damian Oliva Campos, Universidad Juárez Autónoma de Tabasco

Ingeniero Químico que  ha desarrollado tecnologías para la remediación de aguas contaminadas con petróleo con la producción bioenergías.

Marcia Eugenia Ojeda Morales, Universidad Juárez Autónoma de Tabasco

Realiza investigaciones en la detección y purificación de metabolitos microbianos para la solubilización de hidrocarburos. Y ha desarrollado tecnologías para la restauración de sitios contaminados con petróleo.

Laura Lorena Díaz Flores, Universidad Juárez Autónoma de Tabasco

Dra. en Ciencias que trabaja en el desarollo de materiales  fotocatalíticos para la remediación de aguas con  contaminantes orgánicos e inorgánicos.

José De Los Santos López Lázaro, Universidad Juárez Autónoma de Tabasco

Profesor investigador que ha trabajado en la purificación de metabolitos a partir de vegetales por extracción supercrítica. y en el desarrollo de procesos para la producción de biocombustibles.

References

Y. Cancino-Solórzano, J. P. Paredes-Sánchez, A. J. Gutiérrez-Trashorras, y J. Xiberta-Bernat, «The development of renewable energy resources in the State of Veracruz, Mexico», Utilities Policy, vol. 39, pp. 1-4, abr. 2016, doi: https://doi.org/10.1016/j.snb.2024.136538.

T. W. Sleight, C. N. Sexton, G. Mpourmpakis, L. M. Gilbertson, y C. A. Ng, «A Classification Model to Identify Direct-Acting Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products», Chemical Research In Toxicology, vol. 34, n.o 11, pp. 2273-2286, oct. 2021, doi: https://

doi.org/10.1021/acs.chemrestox.1c00187.

Ramírez, P. PemeX registra 176 derrames y fugas de alto impacto ambiental de 2018 a 2021, Causa Natura. 2021. Recuperado de: https://causanaturamedia.com/periodismo-cn/pemexregistra- 176-derrames-y-fugas-de-alto-impacto-ambiental-de-2018-a-2021 Consultado

de octubre de 2024.

A. V. Botello, L. A. Soto, G. Ponce-Vélez, y S. V. F, «Baseline for PAHs and metals in NW Gulf of Mexico related to the Deepwater Horizon oil spill», Estuarine, Coastal And Shelf Science, vol. 156, pp. 124-133, abr. 2015, doi: https://doi.org/10.1016/j.ecss.2014.11.010.

Z. Liu, J. Liu, Q. Zhu, and W. Wu, “The weathering of oil after the Deepwater Horizon oil spill: insights from the chemical composition of the oil from the sea surface, salt marshes and sediments,” Environmental Research Letters, vol. 7, no. 3, p. 035302, Sep. 2012, doi: https://doi.org/10.1088/1748-9326/7/3/035302.

Petróleos Mexicanos (PEMEX), 2023. Unidad de Transparencia. Versión electrónica de los derrames de crudo y fuga de gas en Tabasco durante el periodp de 2013 al 2023.

C. Munoz-Cupa, Y. Hu, C. Xu, y A. Bassi, «An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production», Science Of The Total Environment, vol.754, p. 142429, feb. 2021, doi: https://doi.org/10.1016/j.scitotenv.2020.142429.

B. E. Logan et al., «Microbial Fuel Cells: Methodology and Technology», Environmental Science & Technology, vol. 40, n.o 17, pp. 5181-5192, jul. 2006, doi: https://doi.org/10.1021/es0605016.

K. Zhiyuan, Z. Yongheng, F. Zhimin, Z. Yuancan, Y. Rong, “Mechanism of stable power generation and nitrogen removal in the ANAMMOX-MFC treating low C/N wastewater,” Chemosphere, vol. 296, p. 133937, June 2022, https://doi.org/10.1016/j.chemosphere.2022.133937

J. Yang, X. Cao, Y. Sun, G. Yang, W. Yi, “Recovery of microbial fuel cells with high COD molasses wastewater and analysis of the microbial community,” Biomass and Bioenergy, vol. 161, p. 106450, June 2022, https://doi.org/10.1016/j.biombioe.2022.106450

X. Hou et al., “An insight into algicidal characteristics of Bacillus altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species,” Chemosphere, vol. 310, p. 136767, Jan. 2023, doi: https://doi.org/10.1016/j.chemosphere.2022.136767.

B. Li et al., “Bacillus altitudinis strain AMCC 101304: a novel potential biocontrol agent for potato common scab,” Biocontrol Science and Technology, vol. 29, no. 10, pp. 1009–1022, Jul. 2019, doi: https://doi.org/10.1080/09583157.2019.1641791.

E. Farid, E. A. Kamoun, T. H. Taha, A. El-Dissouky, and T. E. Khalil, “Eco-friendly Biodegradation of Hydrocarbons Compounds from Crude Oily Wastewater Using PVA/Alginate/Clay Composite Hydrogels,” Journal of Polymers and the Environment, vol. 32, no. 1, pp. 225–245, Jul. 2023, doi: https://doi.org/10.1007/s10924-023-02991-y.

M. T. Madigan, J. M. Martinko, K. S. Bender, D. H. Buckley, y D. A. Stahl, Brock Biología de los Microorganismos, 14a ed., Madrid, España: Pearson, 2015.

Y. Córdova-Bautista, E. Ramírez-Morales, B. Pérez-Hernández, M. E. Ojeda-Morales, J. S. López- Lázaro, and G. Martínez-Pereyra, “Electricity Production and Bioremediation from Synthetic Sugar Industry Wastewater by Using Microbial Isolate in Microbial Fuel Cell,” Sugar

Tech, vol. 22, no. 5, pp. 820–829, May 2020, doi: https://doi.org/10.1007/s12355-020-00830-1.

S. Madani, R. Gheshlaghi, M. A. Mahdavi, M. Sobhani, and A. Elkamel, “Optimization of the performance of a double-chamber microbial fuel cell through factorial design of experiments and response surface methodology,” Fuel, vol. 150, pp. 434–440, Jun. 2015, doi: https://doi.org/10.1016/j.fuel.2015.02.039.

ASTM International, “Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method,” ASTM D2007-11, 2011.

W. Shen et al., “Improving the power generation performances of Gram-positive electricigens by regulating the peptidoglycan layer with lysozyme,” Environmental Research, vol. 185, p. 109463, Jun. 2020, doi: https://doi.org/10.1016/j.envres.2020.109463.

D. R. Boone and G. Garrity, Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes. Springer Science & Business Media, 2001.

B. Liu et al., “Polyurethane nanofiber membranes immobilized with Bacillus altitudinis LS-1 for bioremediation of diesel-contaminated wastewater,” Process Safety and Environmental Protection, vol. 180, pp. 883–892, Dec. 2023, doi: https://doi.org/10.1016/j.psep.2023.10.060.

F. Zhao, H. Zhu, Q. Cui, B. Wang, H. Su, and Y. Zhang, “Anaerobic production of surfactin by a new Bacillus subtilis isolate and the in situ emulsification and viscosity reduction effect towards enhanced oil recovery applications,” Journal of Petroleum Science and Engineering,

vol. 201, p. 108508, Jun. 2021, doi: https://doi.org/10.1016/j.petrol.2021.108508.

G. Mohanakrishna, I. M. Abu-Reesh, S. Kondaveeti, R. I. Al-Raoush, and Z. He, “Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell,” Bioresource Technology, vol. 253, pp. 16–21, Apr. 2018, doi: https://doi.org/10.1016/j.biortech.2018.01.005.

K. Lawson, R. Rossi, J. M. Regan, and B. E. Logan, “Impact of cathodic electron acceptor on microbial fuel cell internal resistance,” Bioresource Technology, vol. 316, p. 123919, Nov. 2020, doi: https://doi.org/10.1016/j.biortech.2020.123919.

Published

2024-12-31