Detección de depresión mediante procesamiento de fotogramas
Keywords:
Depression, facial expressions, sadnessAbstract
Abstract Depression is a mental disorder that exacts a high cost. Therefore, it is useful to design a support tool for its diagnosis. This project proposes to measure the mental disorder of depression in an individual by analysing facial expressions where repetitive sadness is detected as a factor related to depression; and a second auxiliary technique through the Montgomery test applied by experts in Psychology to verify the results obtained. Frames taken from a video are processed, where the face is located using Viola & Jones and characteristic BRISK points related to sadness. For facial expression recognition, FAGS (Facial Action Units System) is used; since the movement of the muscles is taken into account through the localized key points, of which through statistics it is recognized if there was a change caused by the movement. As a result, the system allows the detection of depression through graphs. Detection of depression is important when considering losses, especially after the pandemic period.
References
Referencias
Botto, A., Acuña, J. E. C., & Jiménez, J. E. La depresión como un diagnóstico complejo: Implicancias para el desarrollo de recomendaciones clínicas. Revista Médica De Chile, 142(10), 1297-1305, 2014.
Thayer, R. E. The biopsychology of mood and arousal. Choice Reviews Online, 28(03), 28-1830. Velayos, J.L. Anatomía de la cabeza. Ed. Médica Panamericana, 2014
Ibor, M. I. L. Ansiedad y depresión, reacciones emocionales frente a la enfermedad. Anales de medida interna, 24(5), 2007.
Agudelo, D., Buela-Casal, G., & Spielberger, C. D. Ansiedad y depresión: el problema de la diferenciación a través de los síntomas. Salud Mental, 30(2), 33-41, 2007.
Jan, A., Meng, H., Gaus, Y. F. A., Zhang, F., & Turabzadeh, S. Automatic Depression Scale Prediction using Facial Expression Dynamics and Regression, 2014.
Nasir, Jati, A., Shivakumar, P. G., Chakravarthula, S. N., & Georgiou, P. G. (2016). Multimodal and Multiresolution Depression Detection from Speech and Facial Landmark Features, 2016.
Yin, S., Liang, C., Ding, H., & Wang, S. A Multi-Modal Hierarchical Recurrent Neural Network for Depression Detection. 2019.
Scherer, S., Stratou, G., & Morency, L Audiovisual behavior descriptors for depression assessment, 2013
Francesa, R., & AHanasio, P. (2021). Supporting Depression Screening with Multimodal Emotion Detection, 2021.
B. H. Prasetio, H. Tamura and K. Tanno, "The facial stress recognition basad on multi-histogram features and convolutional neural network",2018 IEEE International Conference on Systems Man and Cybemetics (SMC), pp. 881-887, 2018.
M. Pediaditis, G. Giannakakis, F. Chiarugi, D. Manousos, A. Pampouch-idou, E. Christinaki, G. latraki, E. Kazantzaki, P. G. Simos, K. Marias el al., "Extraction of facial features as indicators of stress and anxiety",2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Sociaty (EMBC), pp. 3711-3714, 2015.
G. Giannakakis, M. Pediaditis, D. Manousos, E. Kazantzaki, F. Chiarugi, P. G. Olmos, et al., "Stress and anxiety delection using facial cuas from videos",Biomedical Signa! Processing and Control, vol. 31, pp. 89-101, 2017.
P.A Friesen Ekman and W.V., The facial action coding system (book review), pp. 251, Jan 1979.
C. Viegas, S.-H. Lau, R. Maxion and A. Hauptrnann, 'Towards indepen-dent stress detection: A dependent modal using facial action units`,2018 International Conference on Content-Basad Multimedia Indexing (CBMI), pp. 1-8, 2018.
M. Gavrilescu and N. Vizireanu, "Predicting depression anxiety and stress levels from videos using the facial action coding system",Sensors, vol. 19, no. 17, pp. 3693, 2019.
P. Yuen, K. Hong, T. Chen, A. Tsitiridis, F. Kam, J. Jackman, D. James, M. Richardson, L. Williams, W. °Mord el aL,Emotional & physical stress detection and classificatren using thermal imaging technique, 2009.
Pons, C., Giandini, R. S., & Pérez, G. T. Desarrollo de software dirigido por modelos. En Editorial de la Universidad Nacional de La Plata (EDULP) / McGraw-Hill Educación eBooks, 2010.
Agrawal, S., & Khatri, P. (2015). Facial Expression Detection Techniques: Basad on Viola and Jones Algorithm and Principal Component Analysis, 2015.
Velayos, J.L. Anatamla de la cabeza. Ed. M anamericana, 2014
RO] Jaramillo, 5 (2017). Músculos mímicos. Re o Institucional. Universidad Inca Garcilaso de la Vega.
http://repositorio.uigv.edu.pe/handle/20.500.1 8/1925
Rodríguez, J. M., & Nada, I. M. Técnica de fijación frontal en cirugía de ptosis palpebral mediante banda de silicona. Revista Médica Electrónica, 40(6), 2140-2155, 2018.
Corneanu, C. A., Madadi, M., & Escalera, S. Deep Structure Inference Network for Facial Action Unit Recognition. En Lectura Notes in Computer Science (pp. 309-324). Springer Science+Business Media, 2018.
Guédat, C., Stergiopulos, O., Kiliaridis, S., & Antonarakis, G. S. (2021). Association of masseter muscles thickness and facial morphology with facial expressions in children. Clinical and experimental dental research, 2021.
a] Leutenegger, S., Chli, M., & Siegwad, R. BRISK, Binary Robust invariant scalable keypoints, 2011.
Romero, R; Gallegos, F, Romero, J. Video Analysis with Faces using Halas Detector. Journal of Advanced Computer Science and Applications (IJACSA), Volume 10 Issue 8, 2019
Chen, T. Pythagorean funy linear programming technique for multidimensional analysis of preference using a squared-distance-based approach for multiple Gritada decision analysis. Export Systems With Applications, 164, 2021.
Salem, E. A., Hassaballah, M . , Mahmoud, M. M., & AH A. E. A. Facial Features Detection: A Comparativa Study. En Advances in intelligent systems and computing (pp. 402-412). Spdnger Natura, 2021
Hengartner, M. P., Jakobsen, J. C., Serenen, A., & Plóderl, M. Efficacy of new-generalion antidepressants assessed with the Montgomery-Asberg Depression Rating Scale, the gold standard clinician rating scale: A metaanalysis of randornised placebo-controlled trials. PLOS ONE, 15(2), 00229381, 2020.