Análisis de datos mediante herramientas tecnológicas para campañas digitales de una compañía inmobiliaria
Keywords:
Data Analysis, Customer Profiling, CRISP-DMAbstract
This research implemented a selection of advanced statistical tools to identify potential customer profiles for a real estate company. The CRISP-DM approach was employed along with regression models and clustering techniques to model and predict customer behavior, based on a set of relevant variables. The results obtained reveal significant evidence regarding initial contributions in the buying-selling rocess. This allows for the establishment of strategies to personalize advertising campaigns and enhance decision-making.
References
L. M. H. Pérez y J. M. Pérez, “Adopción de Big Data Analitycs en las PyMEs, ”Investigación Administrativa, vol. 53, no. 134, pp. 1-21, 2024.
IBM Documentation, "CRISP-DM Help Overview," IBM, 2021. [En línea]. Disponible en: https://www.ibm.com/docs/es/spss-modeler/saas?topic=dm-crisp-help-overview.
J. F. Montalvo García, “CRISP-DM/SMES: una metodología de proyectos de analítica de datos para las PYME,” Revista de Ciencia y Tecnología, 2021.
Espinosa-Zúñiga, J. J. (2020). Aplicación de metodología CRISP-DM para segmentación geográfica de una base de datos pública. Ingeniería, investigación y tecnología, 21.
Cheng, C.-H, y Chen, Y.-S, "Classifying the segmentation of customer value via RFM model and RS theory," Expert Systems with Applications, vol. 36, no. 3, pp. 4176-4184, 2009, doi: 10.1016/j.eswa.2008.04.003.
Kaufman, L., y Rousseeuw, P. J., "Finding Groups in Data: An Introduction to Cluster Analysis," John Wiley & Sons, 2009.
